Suscribirse

Regístrate gratis

  • Accede rápidamente a tus artículos favoritos

  • Gestiona las alertas de noticias y pilotos favoritos

  • Haz que tu voz se escuche comentando los artículos

Motorsport Sin Anuncios

Descubre el contenido premium
Suscribirse

Edición

España

Ferrari explica el problema del motor de Vettel

El equipo Ferrari de F1 ha identificado el problema que sufrió en su motor la semana pasada en Barcelona y asegura no estar preocupado por ello.

Sebastian Vettel, Ferrari SF1000, se detiene en pista con avería

Foto de: Jerry Andre / Motorsport Images

Sebastian Vettel se detuvo en pista el viernes por la mañana, y el equipo italiano perdió un valioso tiempo mientras reemplazó su motor. 

La unidad dañada se envió de vuelta a Maranello para ser revisada y Ferrari explicó este lunes el resultado de su investigación.

"La unidad que tuvo el problema el viernes pasado ha sido desmontada y analizada en Maranello. El fallo fue un problema no estructural con el sistema de lubricación. No es una causa de preocupación y el trabajo para solucionarlo ya está en marcha", comentó el equipo. 

El problema, junto a una falta general de ritmo en comparación con sus rivales, llevó al paddock a sugerir que el equipo todavía tiene trabajo por hacer antes de Australia. 

Ferrari también dejó claro que espera mostrar más ritmo esta semana, asegurando: "Durante los próximos tres días, en los últimos test antes de que la temporada arranque en Australia el 15 de marzo, el equipo empezará a trabajar en el rendimiento, mientras que lleva a cabo simulaciones de clasificación y carrera". 

Mattia Binotto, jefe del equipo, dijo la semana pasada que el SF1000 "no será muy diferente" en Australia. Sin embargo, el equipo parece estar revisando los alerones delanteros y traseros y la cubierta motor para esta semana, donde Vettel se subirá al coche el miércoles por la mañana, antes de darle el relevo a Leclerc por la tarde. El alemán seguirá el jueves y Leclerc cerrará la pretemporada el viernes. 

El cuatro veces campeón del mundo de F1 dijo hace unos días que Ferrari no había planeado sacar el máximo rendimiento de su motor en las tres primeras jornadas. 

"Puedes jugar mucho con los modos de motor y demás. Creo que ahora mismo el objetivo no es demostrar el rendimiento máximo del motor, sino hacer cuantas más vueltas, mejor. Obviamente, hemos hecho muchos kilómetros para asegurarnos que el coche es fiable", dijo.

"Creo que el dar una vuelta de tuerca al motor y demás es algo que no quieres hacer en los test ni mostrárselo a todos. No está en la agenda, hasta donde yo sé". 

Las soluciones técnicas de la F1 en la primera semana de test

Haz click en las imágenes para descubrir más...

Miércoles

Detalles del McLaren MCL35

El McLaren MCL35 aparece con una compleja parrilla de sondas en torno a su toma de aire para medir el flujo de aire, de tal manera que el equipo se asegure de que la cantidad de air e que entra es la esperada. 

Detalle trasero del Ferrari SF1000

El Ferrari SF1000 con parafina pintada en el difusor. El equipo intenta identificar cualquier inconsistencia en el flujo de aire y asegurarse de que rinde como esperaba. 

 

Detalle del alerón delantero del Ferrari SF1000

El SF1000 incorporó un equipamiento extra en el alerón delantero durante el jueves. Estos sensores, montados en las porciones externas y en el centro del ala miden la distancia al suelo para que el equipo pueda revisar cuánto flexa el alerón. 

Alex Albon, Red Bull Racing RB16

El Red Bull RB15 con una gran parrilla de sondas detrás de las ruedas delanteras. Mira cómo la concentración de las sondas cambia en la base, en el centro y encima de la rueda.

Detalle lateral del fondo plano del Ferrari SF1000

Una pequeña parrilla de sondas en el fondo plano del Ferrari para medir el flujo de aire entorno a esa superficie camino de la región en forma de botella de refresco.

Racing Point RP20

En esta imagen, el Racing Point RP20 aparece sin las ruedas, lo que deja al descubierto algunos aspectos ocultos del coche, como los bargeboards y el divisor.

Lando Norris, McLaren MCL35

El McLaren MCL35 con una gran parrilla de sondas en al trasera, algo dañada en la zona más alta, que no fue diseñada para soportar tanto peso. 

Charles Leclerc, Ferrari SF1000

En esta imagen podemos ver la configuración de bargeboard del Ferrari SF1000, destacando los dos boomerangs. 

Charles Leclerc, Ferrari SF1000

Otra foto en movimiento del SF1000. Esta vez los sensores del alerón delantero son los protagonistas, también se ve la cámara extra en el lateral izquierdo de la toma de aire (a la derecha de la imagen). 

George Russell, Williams FW43

El Williams FW43 con un par de parrillas justo detrás de las ruedas delanteras.

Lando Norris, McLaren MCL35

Una toma diferente del McLaren MCL35 equipado con parrillas de sondas Kiel en la trasera. 

Alexander Albon, Red Bull Racing

El Red Bull RB16 no solo tiene parrillas detrás de las ruedas traseras, sino también dentro de la toma de aire. 

Kimi Raikkonen, Alfa Romeo Racing C39

El Alfa Romeo C39 con sondas Kiel detrás de las ruedas delanteras para medir la estela creada por el neumático y ver cómo estabilizar el mapa del flujo de aire. 

Alerón trasero del Mercedes F1 W11 EQ Power+

El Mercedes W11 equipado con parrillas de sondas Kiel en la trasera para medir el flujo de aire por delante de la rueda trasera y sobre los pontones y el capó motor. 

Charles Leclerc, Ferrari SF1000

En esta imagen se ven los vórtices que deja el alerón trasero del Ferrari SF1000.

Daniel Ricciardo, Renault R.S.20
Más vórtices, esta vez con el Renault.
Kimi Raikkonen, Alfa Romeo Racing C39

Alfa, después de usar las parrillas de sondas Kiel, optó por la parafina, pintando el lado izquierdo del coche para correlacionar los datos reales del flujo de aire con los del simulador de la fábrica. 

Kimi Raikkonen, Alfa Romeo Racing C39
Más imágenes del Alfa Romeo C39 con parafina.
Alex Albon, Red Bull Racing RB16
El Red Bull RB16 con una sola fila horizontal de parrillas con sondas justo delante del alerón trasero.
Sergio Perez, Racing Point RP20
El Racing Point RP20 cuenta con los apéndices en forma de bala a los lados de la toma de aire, donde se esconden cámaras infrarrojas para monitorizar el rendimiento de los neumáticos.
Lando Norris, McLaren MCL35
Lando Norris, a los mandos de un MCL35 con parafina en los dos elementos del T-Wing.
Lando Norris, McLaren MCL35
Norris, ahora sin los dos elementos del T-wing.
Detalle del alerón delantero del Alfa Romeo Racing C39
Una imagen de cerca del alerón delantero del Alfa Romeo y las pestañas de metal que mantienen unidas las láminas y favorecen la rigidez general del alerón.
Detalle aerodinámico del retrovisor del  Alfa Romeo Racing C39

En esta imagen se ve la forma de la entrada del pontón, la cual ha descendido, al mismo tiempo que se ha adelantado su estructura de impacto lateral, que ahora está en la carrocería inferior del pontón. 

Volante del Alfa Romeo Racing C39

Imagen de cerca del volante del Alfa Romeo C39, donde se ven las tres ruedas en el centro, diversos botones y otras ruedas para los pulgares. 

Alex Albon, Red Bull Racing

Otra imagen del Red Bull Rb16, que no solo se comprime en la parte trasera bajo carga, sino que también tiene parafina en el alerón trasero.

Alex Albon, Red Bull Racing

En esta imagen, el Red Bull cuenta con dos versiones de parafina, con una pintura verde usada a la izquierda y una azul más clara a la derecha.

Detalle aerodinámico del Alfa Romeo Racing C39

Detalle aerodinamico del Alfa Romeo C39, donde se ven los apéndices de los bargeboard y los turning vanes renovados por detrás. 

Freno delantero del Ferrari SF1000

El conducto de freno delantero del Ferrari, que emite el máximo flujo aerodinámico posible a través de la llanta para ganar rendimiento aerodinámico. 

Valtteri Bottas, Mercedes AMG F1 W11

Una vista general desde arriba del Mercedes W11 nos muestra la complejidad extrema de la zona del bargeboard. 

Valtteri Bottas, Mercedes F1 W11

Otra imagen desde arriba del W11, esta vez con parafina en las suspensiones delanteras. 

Kimi Raikkonen, Alfa Romeo Racing C39

Una imagen con parafina del Alfa Romeo C39 y cómo se esparce hacia abajo en el lateral del chasis. 

32

Jueves

El Williams FW43 en el garaje

Se abren las puertas y... un vistazo al garaje Williams, donde se ve la suspensión delantera y el diseño del chasis.

Detalles de los frenos delanteros del Ferrari SF1000

Ferrari ha hecho cambios en el diseño del tambor del freno para 2020, ya que el equipo busca mover aún más flujo de aire a través del conjunto y hacia afuera a través de la cara de la rueda. Por supuesto, esta es una decisión con ventajas aerodinámicas, en lugar de estar destinada a la refrigeración de los frenos, ya que el equipo busca replicar el tipo de rendimiento que proporcionaba el eje soplado, ahora prohibido.

Detalle del Red Bull Racing RB16

Red Bull también está buscando una mejora similar con el conjunto del conducto de freno, instalando una entrada enorme para capturar el flujo de aire y no solo distribuirlo a los diversos componentes de frenado, sino también dispararlo a través del borde de la rueda para condicionar la estela generada por el neumático.

Detalle del Red Bull Racing RB16

Siguiendo con el conducto de freno del Red Bull, nos movemos hacia la parte trasera del monoplaza, donde es fácil ver cuánto trabajo se ha dedicado a mejorar las propiedades aerodinámicas de los aletines conectados a la lámina vertical principal y también al propio tambor. Se pueden observar las pequeñas protuberancias en forma de ampolla que redirigen suavemente el flujo que se pueda perder hacia la ruta prevista.

Detalle del freno trasero del Mercedes F1 W11

Mercedes ha llevado un poco más allá los conceptos utilizados la temporada pasada. El principal es la expansión de la cámara en el brazo superior de la suspensión, que puede incrementar el flujo de aire en el espacio entre el tambor y la llanta de la rueda, lo que ayuda a enfriar la superficie de la llanta y, por extensión, la temperatura del neumático.

Detalle del freno delantero del Racing Point RP20

Si no fuera por la pintura rosa y el logotipo de BWT en el morro, puede confundirse este conjunto de freno y suspensión con el Mercedes. Racing Point incluso ha llegado al punto de usar las boquillas generadoras de vórtices dentro de la sección cruzada del diseño del tambor, que Mercedes introdujo en Japón la temporada pasada.

Detalle del retrovisor del Mercedes F1 W11

Esta imagen de la parte delantera del pontón del Mercedes W11 muestra lo que parece ser una solución temporal que se utiliza para enfriar los componentes electrónicos situados en la base del mismo.

Esteban Ocon, Renault R.S.20

El RS20 en el garaje sin la carrocería, una imagen que es posible ver este año debido a la eliminación de los paneles que los equipos solían colocar cuando regresaban al garaje. Podemos ver la configuración de la unidad de potencia Renault, sus accesorios y los diversos elementos de refrigeración.

Valtteri Bottas, Mercedes F1 W11

Mercedes instaló un par de parrillas con sondas Kiel detrás de las ruedas delanteras del W11 en las primeras vueltas de los test. Estas se utilizan para recopilar datos del flujo de aire, lo que brinda a los ingenieros una imagen más clara de si está funcionando como estaba previsto cuando diseñaron las partes respectivas del monoplaza.

Esteban Ocon, Renault R.S.20

El Renault RS20 sale a la pista con una parrilla de sondas Kiel más pequeña y más estrecha que se monta en la parte inferior para medir la estela que sale del neumático delantero y su impacto en el vórtice Y250.

Detalle delantero del Renault R.S.20

El Renault RS20 presenta un morro mucho más estrecho que su predecesor, lo que le permite llevar una solución de capa muy grande. Sin embargo, han colocado un orificio un poco más atrás para mejorar el flujo localizado y hacia dentro.

Carlos Sainz, McLaren MCL35

McLaren optó por la parafina como medio para correlacionar los datos en la pista con lo que se anticipó en la fábrica. Esta pintura verde, en la parte trasera del coche, deja rastros que los ingenieros fotografiarán y analizarán en los próximos días y semanas.

George Russell, Williams FW43

George Russell al volante del Williams FW43, que está equipado con dos parrillas de sondas Kiel grandes para medir la estela creada por los neumáticos delanteros y cómo puede influir en la zona trasera.

Carlos Sainz, McLaren MCL35

El MCL35 ha sido equipado con algunas estructuras más grandes en el arco antivuelco que albergan cámaras adicionales, que capturan imágenes térmicas de los neumáticos para ayudar a construir una mejor imagen de cómo se pueden gestionar durante una temporada.

Sergio Pérez, Racing Point RP20

El Racing Point RP20 también está equipado con una plataforma similar, aunque con un diseño más parecido a una bala para que no afecte al rendimiento aerodinámico del coche.

Charles Leclerc, Ferrari SF1000

Ferrari también comenzó a pintar de parafina su alerón trasero, con esta en la cara delantera del plano principal en esta imagen.

Esteban Ocon, Renault R.S.20

En esta imagen de Esteban Ocon y su Renault RS20 sin las cubiertas vemos la estructura de impacto lateral superior, que como en la mayoría de la parrilla está en una posición más baja y más hacia adelante. La estructura verde simplemente se usa como soporte para el anclaje del espejo retrovisor mientras la carrocería del pontón no está instalada.

Daniil Kvyat, AlphaTauri AT01

Esta vista trasera del Alpha Tauri AT01 nos da una buena indicación de lo estrechos que son los laterales de los monoplazas, con los diversos apéndices aerodinámicos que se extienden para cubrir la distancia permitida hasta el borde del coche.

Robert Kubica, Alfa Romeo Racing C39

Esta toma lateral del Alfa Romeo C39 nos en seña el conjunto de deflectores del pontón, un diseño ordenado que no solo tiene una ranura vertical muy estrecha en el elemento de la parte delantera del fondo más adelante, sino que también se combina muy bien en el arco horizontal de los elementos estilo persiana.

Max Verstappen, Red Bull Racing

Una foto desde atrás del Red Bull RB16 que muestra lo alta que es la suspensión trasera este año y también nos muestra el diseño de escape estilo "Mickey Mouse".

Sergio Perez, Racing Point RP20

Esta vista lateral del RP20 nos da una indicación más clara de las cámaras infrarrojas que están montadas dentro de las cápsulas de aire tipo bala.

Kevin Magnussen, Haas VF-20

Esta imagen es un buen ejemplo de que cuando crees que los equipos no están haciendo trabajo de correlación, ya que no tienen parafina o parrillas con sondas Kiel enormes en su coche, lo hacen de otra manera. Podemos observar la hilera de sondas Kiel en el fondo plano del Haas VF-20, estas capturan los datos de flujo de aire.

Carlos Sainz, McLaren MCL35

Más parafina en el McLaren MCL35, esta vez en los bargeboards y laterales del flanco izquierdo, para reunir aún más datos sobre el nuevo monoplaza.

Detalle frontal del Red Bull Racing RB16

La parte delantera del fondo plano del Red Bull RB16 revela solo algunos de los detalles del empaquetado de la suspensión, pero también nos da una indicación clara del trabajo que se está realizando para crear espacio para las conducciones internas que alimentarán el conducto S.

Detalle delantero del Red Bull Racing RB16

Otra vista de la parte delantera del fondo plano, esta vez con el vanity panel en su lugar. También se aprecia enfoque antiguo que ha renacido en el RB16: la campana debajo del chasis, que recoge flujo de aire para refrigerar la electrónica.

25

Viernes

Motor del Red Bull Racing RB16

Al quitar los paneles de entrada a los garajes, se pueden lograr imágenes como esta. Aquí se ven los radiadores y los elementos auxiliares encima del motor Honda en el Red Bull RB16. Esta decisión llegó por el deseo de reducir el tamaño de los pontones para tener ganancias aerodinámicas. 

Motor del AlphaTauri AT01

Sirva como comparación esta imagen del AlphaTauri AT01, donde se puede ver que guarda muchas similitudes con su hermano mayor, dada la misma unidad de potencia que comparten. 

Motor del Racing Point RP20

En esta imagen del Racing Point RP20 podemos ver la posición de la estructura de impacto lateral, la del radiador y la de algunos componentes del motor, incluyendo los quiebros que el escape debe realizar. 

Haas F1 Team VF-20

Los pontones y los bargeboards del Haas VF20.

AlphaTauri AT01

La trasera del AT01 muestra un alerón con forma de cuchara y el difusor.

Mercedes F1 W11

El Mercedes W11 lleva una parrilla de sondas Kiel en la trasera. Esto se utilizada para completar un mapa aerodinámico, o perfil, del flujo de aire cuando sale de la trasera del coche. Se tiene especial consideración en el difusor y la estela del neumático, como se ve en los ángulos de las sondas Kiel.

Freno del Mercedes AMG F1 W11

En esta imagen del montaje del freno del W11 sin el tambor en su sitio podemos ver cómo el equipo transmite aire desde el orificio principal a través del sistema y hacia fuera de la llanta. Así, logra beneficios aerodinámicos. La canalización plateada es una característica redifinida durante el diseño del año pasado para potenciar los orificios más grandes del eje. 

Freno del Mercedes F1 AMG W11

Otra imagen del freno del Mercedes en la que se ven los orificios del eje.

Suspensión delantera del Mercedes F1 AMG

El chasis del Mercedes W11 se estrecha en la parte delantera para acomodar el conjunto del morro más estrecho que se encuentra delante, mientras que se coloca una cubierta de carbono en la parte delantera del frontal del fondo plano para disuadir las miradas curiosas.

Delantera del Haas F1 Team VF20

El Haas VF20 cuenta con unos puntos amarillos guías en el endplate delantero del alerón para que una cámara de alta velocidad analice la flexión de este. 

Suspensión delantera del Racing Point RP20

Aquí vemos una de las configuraciones de suspensión del Racing Point RP20. Mientras que el chasis ha llamado la atención por su similitud con el Mercedes de 2019, podemos ver que aquí usan sus propios componentes. 

Delantera del McLaren MCL35

Un nuevo alerón delantero llegó a McLaren para el último día de test de la primera semana de la F1 2020, con cambios en la forma de los flaps, las láminas bajo el alerón, el papel del configurador, el endplate y el borde inferior externo. 

Delantera del McLaren MCL35

En esta imagen del MCL35 apreciamos cómo el equipo modificó el diseño del chasis, estrechándolo y reduciendo su altura lo máximo posible. Además, también se ha agregado un alerón tipo quilla para mejorar las características del flujo.

Renault F1 Team R.S.20

Aquí vemos el alto grado de rake (inclinación posteroanterior) con el que el RS20 rueda. 

Alfa Romeo Racing C39

Más parafina en el Alfa Romeo C39, esta vez en torno al conducto de freno y que se ha esparcido hacia atrás. 

Alfa Romeo Racing C39
Una imagen más de cerca de la foto anterior.
Racing Point RP20

En esta imagen desde arriba, se ve cómo se ha apretado la trasera del Racing Point hacia la línea central del coche.

McLaren MCL35

Aquí se ve al MCL35 con diferentes colores de parafina, en el bargeboard derecho y en el conducto de freno trasero izquierdo. 

Morro del  Haas F1 Team VF-20

Las aletas presentes en el morro del Haas VF20 no solo se usan para controlar el flujo a través de los orificios, sino también para ayudarles a cumplir con la normativa técnica. 

Volante del Ferrari SF1000

En esta imagen de la parte trasera del volante del Ferrari SF1000 podemos ver la configuración de las diferentes palas. 

Alerón delantero del Ferrari SF1000

Una imagen de la parte externa del alerón delantero del SF1000. Podemos ver cómo el borde principal de cada flap ha sido llevado hacia delante, un poco más cerca de las láminas debajo del alerón, creando un diseño ondulado. 

Alfa Romeo Racing C39

La trasera del Alfa Romeo C39 con parafina permite establecer si los resultados de las simulaciones concuerdan con la pista. 

Alerón delantero del Ferrari SF1000

Un mecánico cambia el ángulo de incidencia del alerón delantero del SF1000.

Kevin Magnussen, Haas F1 Team VF-20, accidentado

En esta imagen del Haas VF20 con el neumático fuera de la llanta se ve que sus ruedas tienen radios huecos, como hemos visto en otros coches en los últimos años.

Lando Norris, McLaren MCL35

El McLaren MCL3 con una inclinación, fijaos en el movimiento de la rueda trasera izquierda cuando el coche desplaza su carga lateralmente. 

Pierre Gasly, AlphaTauri AT01
Otra vista de la carga lateral que soportan los F1.
Red Bull Racing RB16
Parafina en torno al morro del Red Bull, de tal manera que revisan si la consistencia de esta región es la esperada.
27

Pulsa en Versión Completa más abajo si no puedes ver las fotos

Más de F1:

Forma parte de la comunidad Motorsport

Únete a la conversación
Artículo Anterior La continuidad de Honda en F1 más allá de 2021, en duda
Siguiente artículo Los equipos piden a la FIA que controle el intercambio de información

Mejores comentarios

No hay comentarios todavía. ¿por qué no escribes uno?

Regístrate gratis

  • Accede rápidamente a tus artículos favoritos

  • Gestiona las alertas de noticias y pilotos favoritos

  • Haz que tu voz se escuche comentando los artículos

Motorsport Sin Anuncios

Descubre el contenido premium
Suscribirse

Edición

España